Stage-specific activity of the *Leishmania major* CRK3 kinase and functional rescue of a *Schizosaccharomyces pombe cdc2* mutant

Yixin Wang a, Krassen Dimitrov b, Lynne K. Garrity a, Shelley Sazer b, Stephen M. Beverley a,c,*

a Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
b Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
c Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA

Received 30 June 1998; accepted 6 August 1998

Abstract

Cell cycle control by cdc2-related kinases (CRKs) is essential to the regulation of cell proliferation and developmental processes in many organisms. Alternating phases of growth, arrest, and differentiation are characteristics of the infectious cycle of many trypanosomatid parasites, raising the possibility that members of the trypanosomatid CRK gene family participate in the regulation of these essential processes. Here we describe properties of the CRK3 gene from *Leishmania major*, which encodes a 36 kDa protein kinase showing 60% amino acid sequence identity with human CDK2, including several conserved sites implicated in regulation of kinase activity. CRK3 mRNA was constitutively expressed throughout the parasite life cycle, but histone H1 kinase activity of an epitope tagged CRK3 protein was greater in log-phase than in stationary-phase promastigotes. When integrated into the genome and expressed at the optimal level, CRK3 was able to rescue the growth defect of a *Schizosaccharomyces pombe cdc2* mutant (*cdc2-33*), indicating that CRK3 is a functional homolog of cdc2. Mutants of CRK3 at several key regulatory residues showed the expected dominant negative effects on the *S. pombe* mutant. This is the first example of functional expression of a trypanosomatid CRK in yeast, opening the way for further genetic studies within this amenable organism. © 1998 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Cell-cycle control; Development; Protozoan parasite; cdc2 kinase

Abbreviations: CDK, cyclin-dependent kinase; CRK, cdc2-related kinase; PAGE, polyacrylamide gel electrophoresis.
* Corresponding author. Tel.: +1 314 7472930; fax: +1 314 7472634; e-mail beverley@borcim.wustl.edu

0166-6851/98/$ - see front matter © 1998 Elsevier Science Ireland Ltd. All rights reserved.

PH S0166-6851(98)00121-2
1. Introduction

Cell cycle-dependent kinases are key regulators of cell division and mediate important steps in the regulation of developmental processes [1–3]. These two roles are intertwined in many protozoan parasites, because cell division and cellular differentiation are closely coordinated and linked to critical steps in the infectious cycle [4]. This is specifically the case for the trypanosomatid parasite *Leishmania*, the causative agent of cutaneous and visceral leishmaniasis. *Leishmania* alternates between two major developmental stages that undergo replication, the promastigote carried in the gut of the sand fly insect vector and the amastigote that resides within the phagolysosome of the macrophage [5]. The dividing procyclic promastigote is non-infective [6]. Upon exiting from the cell-cycle and entry into stationary phase in culture or in the sand fly, parasites differentiate into the non-dividing metacyclic promastigote, which is highly infective [6]. This coupling of cell division to differentiation makes it likely that cell-cycle dependent kinases play an important role in both the growth and infectious cycle of the parasite.

Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that play essential roles in eukaryotic cell cycle control [7,8]. In yeast, cell-cycle progression is predominantly regulated by a single CDK, p34\(^{cd2}\) in *Schizosaccharomyces pombe* or p34\(^{CDC28}\) in *Saccharomyces cerevisiae* [9]. In higher eukaryotic cells, many CDKs act in a temporally or spatially-specific fashion [10], and an extensive network of regulatory actions serve to control them. CDK activity is activated by association with proteins such as cyclins [11,12], or reduced by binding to various CDK inhibitors [13–15]. CDK activity is also positively and negatively regulated through phosphorylation/dephosphorylation events at key regulatory sites [16,17].

The genomes of trypanosomatid parasites encode a family of CDKs [4,18], and thus resemble higher eukaryotes rather than yeast, which only contain one. In *Leishmania mexicana mexicana*, two CDK genes, CRK1 and CRK3 have been described [19,20]. The LmmCRK1 mRNA and protein are present at similar levels in all parasite stages, but the kinase is only active during the promastigote stage, suggesting that regulation occurs post-translationally, as seen for other CDKs [19]. A distinct CDK activity able to bind yeast p13\(^{suc}\) was detected in dividing but not in non-dividing stages, and recently shown to be the product of the LmmCRK3 gene [19–22]. Both CRK1 and CRK3 have been shown to be essential in procyclic promastigotes [21].

While the known properties of trypanosomatid CDKs resemble those of other organisms, pursuit of their role in the *Leishmania* cell cycle and differentiation has been limited by the relative difficulty of these studies in protozoans. In other species, the study of CDKs has benefited greatly from the ability to express these proteins in heterologous systems such as yeast, where the extensive repertoire and knowledge of interacting genes and mutants has facilitated a detailed genetic dissection of CDK function. While trypanosomatid CDKs have been shown to bind to heterologous CDK-interacting proteins including cyclins and p13\(^{suc}\) [19–21,23], several well-controlled attempts to demonstrate activity in heterologous yeast systems have proven unsuccessful [19,20,23].

In the process of studying a region of *Leishmania* DNA implicated in virulence, we identified a sequence showing closest relationship to the *L. mexicana* and *T. brucei* CRK3 genes [24]. We thus termed it *Leishmania major* CRK3 (or LmajCRK3), and here we describe its sequence, activity and developmental regulation. Notably, expression of CRK3 in *S. pombe* at appropriate levels permitted rescue of a cdc2ts mutant, the first such example of heterologous rescue by a trypanosomatid CRK.

2. Materials and methods

2.1. Parasites

L. major Friedlin V1 promastigotes were grown in M199 medium at 25°C [25]. Promastigotes were harvested in logarithmic phase of growth (2.5 × 10\(^{6}\) cells ml\(^{-1}\)), or allowed to grow to stationary...
phase \((2 \times 10^7 \text{cells ml}^{-1})\). Metacyclic forms were separated from stationary phase culture by the peanut agglutination method [26]. DNA transfections and plating on semi-solid media were performed as described [27]. Infections of BALB/c mice, monitoring of lesions by footpad size, and recovery and purification of amastigotes were performed as described [28].

2.2. Cloning and sequencing of the CRK3 gene

Several cosmids were isolated from a genomic library [29] in the process of identifying virulence genes involved in *L. major* infection. From cosmid I, an 8 kb *Eco* RV fragment including CRK3 was cloned into pBluescript II (Stratagene) for sequence analysis (Beverley lab strain B2136). The CRK3 coding region was amplified by PCR with the primers S8185 (5’-ggagatcgtacagatggaacatg-3’) and SMB186 (5’-gttccagattacgctagcttgggatccacc-3’) to yield epitope-tagged HA in underlined lower case). Influenza hemagglutinin (HA) epitope tag [30] is an N-terminal extension encoding the 11-amino acid sequence (Beverley lab strain B2136). The amplified PCR product yielded epitope-tagged CRK3 (strain B2163). The accuracy of CRK3 coding region was amplified by PCR with primers SMB185 (5’-AAGTTCACAAT) and SMB186 (5’-ACATCAAG-3’) to yield CRK3 (strain B2163). The amplified HA-CRK3 fusion was inserted into the *BamHI* expression site of the *Leishmania* expression vector pXG [31], yielding pXG-HA-CRK3 (strain B2167). The accuracy of the PCR fragment was confirmed by sequencing, and the CRK3 segment was removed by *BamHI* digestion and then inserted into the *BamHI* site of pXG, yielding pXG-CRK3 (strain B2163).

2.3. Site-directed mutagenesis

Oligonucleotide-mediated mutagenesis was performed with uracil-containing template DNA [32]. A 1.4 kb *BglII + HindIII* fragment containing CRK3 was cloned into pGEM-7zf(+) vector (Promega; strain B2155) and used as the template for mutagenesis. Mutants were generated with the oligonucleotides SMB178 (5’-TGTGAGAAGCG-3’); SMB186, digested with *BamHI* and used as the template for mutagenesis. Mutants were generated with the oligonucleotides SMB178 (5’-CATGCACACCTACGCACGGGATCCGTGTATC; mutated nucleotides are underlined) to yield CRK3ON (T3A/Y34F; strain B2157), or with SMB179 (5’-CATGCACACCTACGCACGGGATCCGTGTATC) to yield CRK3OFF (T178A; strain B2158). The mutations were confirmed by sequencing.

2.4. Rescue of a *S. pombe* cdc2 mutant

Wild-type or mutant *L. major* CRK3s were amplified by PCR with primers SMB185 and SMB186, digested with *BamHI* and inserted into the *BamHI* site of the *S. pombe* pREP3X expression vector, which contains a thiamine-repressible nmt1 promoter [33,34]. These constructs (pREP3X-CRK3, -CRKON or -CRKOFF; strains B2172, B3353, and B3354) were introduced into haploid wild-type (*leu1-32, ura4-D18, h−*) or cdc2 mutant (cdc2-33a, leu1-32, h−) *S. pombe* by either electroporation or LiOAc protocols [35]. For induction, cells were precultured in EMM medium [35] containing 5 μg ml−1 thiamine to repress the nmt1 promoter, and then washed and either grown in thiamine-free liquid media or streaked on thiamine-free plates to derepress the promoter, at 36 or 25°C. Cells were observed and photographed using a Zeiss Axioskop microscope.

2.5. RT-PCR, DNA and RNA blot analyses

Total RNA was isolated from Friedlin V1 promastigotes (logarithmic and stationary phases), metacyclic cells, and lesion amastigotes by using the guanidinium method [36] with the RNAzol reagent purchased from Biotecx Laboratories. Complementary DNA was made from 5 μg of stationary promastigote RNA primed with oligo(dT) by SuperscriptII reverse transcriptase (Life Technologies). RT-PCR was performed for 30 cycles of 94°C, 30 s; 55°C, 1 min; and 72°C, 1 min, with a mini-exon specific primer (SMB145; 5’-ATCAGTTTCTGTACCTTATTG) and a CRK3 specific primer (SMB144; 5’-ACATCAAG-CAATTTCAAT). The RT-PCR product was directly cloned into pGEM-T vector (Promega; strain B2152) and sequenced to determine the 5’ splice site of the CRK3 transcript. Genomic DNA was digested by selected restriction enzymes and
separated on a 0.8% agarose gel. Total RNA isolated from different stages was denatured by 7 M glyoxal at 50°C for 1 h and resolved on a 1% gel with a 10 mM Na2HPO4 buffer system. The CRK3 coding region probe was labeled by random priming. Southern and Northern blots were hybridized at 65°C for 16 h and washed at 65°C in 0.1 × SSPE, 1% SDS.

2.6. Immunoprecipitation, protein kinase assay and immunoblotting

Leishmania protein extracts for immunoprecipitation were prepared as described [19]. Five hundred micrograms of protein from *L. major* transfected with pXG-HA-CRK3 were incubated with 20 µl of a polyclonal anti-HA antibody (Clontech) after incubation with preimmune rabbit serum for 1 h. One hundred micrograms of protein A-Sepharose was added and the incubation continued for 1 h. The beads were washed three times with 1 ml of lysis buffer, and used for H1 kinase assays after washing in 1× kinase buffer [19]. They were then preincubated at 30°C for 5 min, and then 20 µl of prewarmed 0.25 mg ml⁻¹ histone H1, 2.5 µM ATP, 50 nCi of [γ⁻³²P]ATP, were added and incubated for 15 min. The reaction was stopped by the addition of SDS-PAGE loading buffer, the samples were boiled for 2 min, and then electrophoresed on a 12.5% SDS-polyacrylamide gel. Following electrophoresis, the gel was dried and autoradiographed at −80°C for overnight. For Western blots, 20 µl of the protein extract was mixed with SDS loading buffer, boiled for 5 min, and electrophoresed as above. The proteins were then blotted to immunoblot membrane (Amersham), and detection performed using the ECL method (Amersham). Results were quantitated by phosphorimaging (kinase activity) and scanning densitometry (protein).

3. Results

3.1. Identification of *L. major* CRK3

DNA sequence analysis [24] of a cosmid that partially rescued the virulence of the avirulent Friedlin A1 line of *L. major* [37] revealed an ORF, potentially encoding a 311 amino acid polypeptide with similarity to the cdc2 family of protein kinases. The ORF showed 56% amino acid sequence identity to both *S. pombe* p34cdc2 [9] and *S. cerevisiae* p34cdc28 [38] (Fig. 1), and 60% identity to human CDK2 [10,39]. Comparisons with several trypanosomatid CRKs showed that the *L. major* ORF had 99, 82, and 82% sequence identity to CRK3s from *L. mexicana* [20], *Trypanosoma cruzi* [23] and *T. brucei* [40], respectively. We thus designated the *L. major* gene CRK3 (LmajCRK3).

The predicted CRK3 protein shows conservation of key functional domains of the cdc2 protein kinase family (Fig. 1). Although there are some substitutions in the conserved PSTAIRE region implicated in cyclin binding, CRK3 retained the highly conserved ATP-binding site found in all functional cdc2/CDK kinases as well as several key residues implicated in cdc2 regulation such as T14, Y15 and T161 (Fig. 1B). The *Leishmania* and *Trypanosoma* CRK3 proteins have 10–11 additional amino acids at the N-terminus as compared to other cdc2 kinases, whose function is unknown.

Since CRK3 was isolated from a cosmid identified by its ability to rescue a long-term culture passage avirulent line, we asked whether CRK3 was the relevant gene identified in this genetic screen. CRK3 was inserted into the *Leishmania* expression vector pXG, transfected into the avirulent *L. major* A1 line, and then tested for infectivity BALB/c mice. This test was negative; instead, another gene present within the cosmid gave rise to the restoration of virulence in the avirulent line (data not shown; LK Garrity, Y Wang, SM Beverley, in preparation). We emphasize that the failure of CRK3 overexpression to rescue virulence of the A1 cell line does not rule out the possible involvement of CRKs in normal growth or pathogenesis of the parasite. This is most clearly shown by the fact that both CRK1 and CRK3 are essential in *L. mexicana* [20,21].

3.2. CRK3 rescues an *S. pombe* cdc2Δ mutant

In order to investigate the functional relatedness of CRK3 to the family of cyclin-dependent
Fig. 1. Comparison of trypanosomatid CRK3 and yeast CDC2/CDC28 kinases. The alignment was produced using the ClustalX algorithm. Positions identical in four or more sequences are shown in gray, and gaps were introduced to maximize homology. Conserved domains are noted and phosphorylation sites are indicated (*). The sequence is deposited in GenBank (AF073381). Lmaj, *Leishmania major*; Lmex, *L. mexicana mexicana*; Tc, *Trypanosoma cruzi*; Tb, *T. brucei*; Sc, *Saccharomyces cerevisiae*; and Sp, *Schizosaccharomyces pombe*.

protein kinases, we attempted to rescue the growth defect of a temperature sensitive *cdc2* mutant in *S. pombe*. CRK3 was expressed from the strong thiamine-repressible *nmt*1 promoter on a multicopy plasmid pREP3X [33,34], and introduced into *cdc2-33*ts mutant cells that arrest predominantly at the G \(_2\)-M transition at 36°C [7,41,42]. The *nmt*1 promoter becomes highly active in minimal medium [34].

Upon derepression of the *nmt*1 promoter, the growth defect of the *cdc2-33*ts/pREP3X-CRK3 cells at the restrictive temperature of 36°C was not reversed. However, the cells did not grow at the permissive temperature of 25°C either. Microscopic observation revealed that the cells did not undergo cellular elongation, which is a character-
Fig. 2. Rescue of a *Schizosaccharomyces pombe* cdc2 mutant by *L. major* CRK3. (A) *cdc2-33* cells transformed with the pREP3X vector, or with pREP3X-CRK3 integrated in the genome, were streaked on plates containing (promoter OFF) or lacking (promoter ON) thiamine, and incubated at 36°C for 3 days. (B–D) Nomarski-optic image of *cdc2-33* cells at the restrictive temperature transformed with the pREP3X vector (B), or pREP3X-CRK3 plasmid with promoter off (C) or promoter on (D).

istic of the *cdc2-33* cell cycle arrest at the restrictive temperature (data not shown). This suggested the possibility of a detrimental effect of CRK3 on cell growth due to a high level of expression. This putative overexpression toxicity was observed only in the *cdc2-33* mutant at the permissive temperature, but not in wild-type cells, suggesting interference specifically with the function of the p34*cdc2* kinase.

We then asked whether a lower level of CRK3 expression could rescue the *cdc2* mutant phenotype. This was accomplished by integrating the multicopy pREP3X-CRK3 plasmid into the yeast genome. 50000 pREP3X-CRK3 transformants were plated on media lacking thiamine at 36°C. Two clones were obtained, which were able to grow at the restrictive temperature when the promoter was derepressed, but not when it was repressed (Fig. 2A). The strains were cultured under non-selective conditions to allow for plasmid loss, and then plated on selective media to ensure retention of the integrated plasmid marker. Chromosomal integration was confirmed by Southern blot analysis (data not shown), and demonstrating that the integrated leucine marker linked to CRK3 segregated 2:2. For one strain, there were 85 *leu*
and 79 leu− colonies, in the other we obtained 48 leu+ and 60 leu− colonies.

Morphological observation revealed that under conditions repressing CRK3 expression, the integrated S. pombe transformants displayed cellular elongation (Fig. 2C) characteristic of cdc2 mutants (Fig. 2B), which was not seen when expression of CRK3 was derepressed (Fig. 2D). Thus, integration of pREP3X-CRK3 allowed CRK3 restoration of the cdc2-33ts mutation but not for exerting negative effects on the growth of the cells.

3.3. Effect of CRK3 mutations in essential regulatory and/or catalytic domains

We tested the activity of two engineered mutant L. major CRK3s. A constitutively active CRK3 (CRK3ON) was created by changing the threonine-tyrosine residues at positions 33-34 to alanine-phenylalanine (Fig. 1). These two residues are implicated in the down-regulation of kinase activity in other cdc2 family members [43]. An inactive CRK3 (CRK3OFF) was created by changing the threonine at position 178 to alanine (CRK3ON) was created by changing the threonine-tyrosine residues at positions 33–34 to alanine-phenylalanine (Fig. 1). These two residues are implicated in the down-regulation of kinase activity in other cdc2 family members [43]. An inactive CRK3 (CRK3OFF) was created by changing the threonine at position 178 to alanine (CRK3ON) was created by changing the threonine-tyrosine residues at positions 33–34 to alanine-phenylalanine (Fig. 1). These two residues are implicated in the down-regulation of kinase activity in other cdc2 family members [43]. An inactive CRK3 (CRK3OFF) was created by changing the threonine at position 178 to alanine (CRK3ON) was created by changing the threonine-tyrosine residues at positions 33–34 to alanine-phenylalanine (Fig. 1).

For wild-type CRK3, no specific phenotype with regard to growth rate or cell morphology was observed when expression of either CRK3 mutant was induced by the absence of thiamine in wild-type cells. However, expression of both CRK3ON and CRK3OFF in the cdc2-33ts mutant lead to growth inhibition, even at the permissive temperature (Fig. 3A). cdc2-33ts cells expressing CRK3OFF (Fig. 3C) had the elongated shape characteristic of loss of function cdc2 mutants (Fig. 2B). In contrast, cdc2-33ts cells expressing CRK3ON (Fig. 3D) had a smaller cell size than wild-type cells (Fig. 3B), indicating a premature entry into mitosis, which is characteristic of the constitutively active dominant cdc2 mutants [43].

Thus, the phenotypes of CRK3ON and CRK3OFF over-expression resemble those of analogous dominant negative mutants of S. pombe cdc2 [47,48] which are thought to be defective in their interactions with regulatory proteins or substrates. The fact that the mutated CRK3 proteins could only affect cdc2-33ts but not the wild-type cells suggests that the mutated p34cdc-33ts is impaired in its ability to interact with regulatory molecules, making it possible for the heterologous CRK3ON and CRK3OFF proteins to exert their dominant negative phenotypes. The same explanation applies to the lack of phenotype from overexpression of the wild-type CRK3 in wild-type cells, as compared to the growth inhibition in the cdc2-33ts mutant strain at the permissive temperature. A similar phenotypic pattern has been observed in fission yeast expressing dominant negative mutants of an Arabidopsis thaliana CDK [49].

3.4. CRK3 is single copy and is expressed constitutively throughout the life cycle

Genomic Southern blot analysis, using a CRK3 coding region probe and digests with several different enzymes lacking sites in CRK3, detected a single hybridizing band, indicating that CRK3 is a single copy gene (data not shown). RT-PCR analysis with CRK3 and mini-exon primers mapped the 5′ splice acceptor to position −364 bp relative to the presumptive translational start codon (Fig. 4). This splice site was also identified by an L. major EST from the LV39 strain (GenBank AA741770). Remarkably, this unexpectedly long 5′-untranslated region contains a 38 bp-long CA dinucleotide repeats and several other nucleotide runs (Fig. 4). Generally, these simple sequence repeats are characteristic features of intergenic sequences in the Leishmania genome [50]. The potential role(s) of these sequences on CRK3 transcription, processing and/or translation has not been tested.

When the same amount of total RNA from logarithmic phase promastigotes, stationary phase promastigotes, metacyclic promastigotes or amastigotes was probed with the CRK3 coding region, a 1.7 kb mRNA was detected with equal intensity in each sample (Fig. 5A). The loading of RNA samples was standardized by hybridization
Fig. 3. Effects of \textit{L. major} 'ON' or 'OFF' CRK3 mutants expressed in \textit{S. pombe}. (A) \textit{cdc2-33ts} cells transformed with the vector pREP3X, pREP3X-CRK3OFF, or pREP3X-CRK3ON plasmids were streaked on a plate containing (promoter OFF) or lacking (promoter ON) thiamine, and incubated at 25°C for 3 days. (B–D) Nomarski optic image of \textit{cdc2-33ts} cells at the permissive temperature transformed with pREP3X (B), pREP3X-CRK3OFF (C), or pREP3X-CRK3ON (D).

of the same blot to the \textit{L. major} actin gene [51] (Fig. 5B). We conclude that the CRK3 mRNA is expressed constitutively throughout the life cycle.

3.5. CRK3 has stage-regulated H1 kinase activity

In order to detect the kinase activity of CRK3, an N-terminal HA-tagged version of the CRK3 protein (HA-CRK3) was expressed in wild-type virulent \textit{L. major} Friedlin V1. The activity of the tagged kinase was assayed by phosphorylation of histone H1, following immunoprecipitations with a polyclonal anti-HA antibody on protein extracts prepared from log and stationary phase parasites (Fig. 6A). The amount of the HA-CRK3 protein in these extracts was determined by Western blots with the same antibody (Fig. 6B). CRK3 H1-kinase activity within log phase promastigotes was
Fig. 4. CRK3 has a long 5'-untranslated region containing many simple-sequence motifs. The AG in bold marks the 5' splice site determined by RT-PCR. Underlining marks the location of CA dinucleotide repeats. The CRK3 coding region is shown with the translated protein sequence underneath. The sequence is deposited in GenBank (AF073381).

approximately 10-fold higher than stationary phase promastigotes (Fig. 6A), while there was relatively little change in HA-CRK3 protein levels (Fig. 6B).

4. Discussion

4.1. Functional rescue of yeast cdc2 mutants by Leishmania CRK3

We have identified and characterized the properties of a L. major CDK protein kinase, CRK3. By expressing CRK3 in a S. pombe cdc2\(^{ts}\) mutant, we were able to rescue the mutant phenotype. Several previously identified trypanosomatid CRKs failed to rescue mutants of S. pombe p34\(^{cdc2}\) or S. cerevisiae p34\(^{CDC28}\) [19,20,23,52]. It seems likely that the reduction in CRK3 expression levels achieved by chromosomal integration may account for the success of our experiments. It has been reported that overexpression of cdc2-related kinases can be toxic to cells [48,53,54]. Consistently, when we expressed CRK3 from an episome in the S. pombe cdc2 mutant, we found that overexpression of the gene rescued the cell morphology, but not the growth. Only the integration of CRK3 was able to rescue growth of the mutant, indicating that a proper level of expression is crucial to the success of heterologous tests of trypanosomatid CDKs. This argues for considerable functional similarity between CRK3 and the cdc2 family protein kinases, and suggests that studies of other CRK3 mutants expressed heterologously in S. pombe could prove valuable (Fig. 3).

4.2. Regulatory sites of cdc2 kinases shared by CRK3

Many cell-cycle regulatory mechanisms are conserved in a wide range of eukaryotic organisms, and correspondingly, many important residues of p34\(^{cdc2}\) are highly conserved as well. In all eukaryotic cells studied, cdc2 is phosphorylated on Y15 and to a lesser extent on the adjacent T14 during interphase, and dephosphorylated at mitosis [43,44,55]. Mutations at these sites result in premature activation of the kinase and entry into mitosis, suggesting that phosphorylation at the residues negatively regulates cdc2 activity [43]. cdc2 is also phosphorylated on T161 and phosphorylation on this site accompanies cdc2 activation during mitosis [44–46]. Mutation of this residue results in the loss of the kinase activity in vitro and the loss of cdc2 function in vivo [46].

We tested the function of these three conserved residues in CRK3. CRK3 contains T33Y34 at the positions analogous to cdc2 T14Y15 within the ATP-binding domain, and has a conserved T178 analogous to cdc2 T161 (Fig. 1). Mutagenesis of these residues in CRK3, and tests of their functions in the S. pombe cdc2\(^{ts}\) mutant, suggests that these residues have functions similar to those in the cdc2 kinase family. Specifically, expression of the CRK3ON (TY14/15AF) and CRK3OFF
(T178A) mutants had dominant negative effects on the cdc2-33ts mutant at the permissive temperature. This phenotype was similar to that observed with analogous S. pombe ‘ON’ and ‘OFF’ mutants [47,48], suggesting a possible interaction between regulatory molecules of S. pombe p34\textsubscript{cdc2} and CRK3.

The 16-amino acid sequence known as the PSTAIRE box is a highly conserved domain thought to be important for binding of cyclins. However, CRK3 has six nonconservative substitutions in this domain, which are shared by trypanosome CRK3s (Fig. 1). The only trypanosome cyclin identified so far has a highly diverged sequence compared to mitotic type cyclins in other eukaryotic organisms [56]. Recently, it was shown that the T. cruzi CRK3 was able to interact with mammalian cyclins [23], suggesting the possibility of families of cyclin genes as seen in higher eukaryotes. Thus, it appears that by genetic and biochemical tests, trypanosomatid CRKs show all of the classic properties of the cdc2 kinase family. The availability of heterologous assays in genetically amenable yeast will provide a powerful new approach for the future dissection of this important pathway.

4.3. Stage-specific kinase activities of CRKs

The presence of a CRK gene family in both Leishmania and trypanosomes suggests that, as in higher eukaryotes, these kinases may have distinct functions in regulation of complex differentiation pattern. The patterns of expression and activity of the known CRKs support this view. L. mexicana CRK1 kinase activity is highest in dividing procyclic promastigotes, declines in metacyclic promastigotes, and is absent from the amastigote phase, although the CRK1 protein is present throughout the life cycle [19]. L. major CRK3 is also regulated by post-translational mechanisms, as the H1-kinase activity declines dramatically in stationary phase (Fig. 6). Similar results were obtained with the p13src-binding kinase (SBCRK) of L. mexicana [19], recently shown to
be CRK3 [20]. Unlike CRK1, *L. mexicana* CRK3 kinase activity was found in both dividing stages of the parasite, making it a candidate for the key mitotic activator of the *Leishmania* cell cycle [19,20]. Gene-knockout studies of *L. mexicana* CRK1 and CRK3 have shown that both of these are essential for promastigote growth [20,21]. As in higher eukaryotes, *Leishmania* appears to possess a variety of CDKs with distinct temporal patterns of expression and activity, which are essential for cellular growth and possibly development.

Since *Leishmania* CRKs differ from their human host CDKs in their sensitivity to inhibitors such as olomoucine [20], it is possible to contemplate the design of species-selective inhibitors of this critical parasite regulatory enzyme. This goal could benefit from the intensive structural and pharmacological efforts already focused upon the host enzyme.

Acknowledgements

This work was supported by a NIAID Fellowship to YW (AI09382), an NSF grant to SS (MCB-9513714), and an NIH grant to SMB (AI 29646). We thank DE Dobson for comments on this manuscript.

References

Krek W, Nigg EA. Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J 1991;10:3331–41.