New *Mos1 mariner* transposons suitable for the recovery of gene fusions in vivo and in vitro

Sophie Goyard\(^a\), Luiz R.O. Tosi\(^a,1\), Julia Gouzova\(^a\), John Majors\(^b\), Stephen M. Beverley\(^a,\ast\)

\(^a\)Department of Molecular Microbiology, Washington University Medical School, Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110, USA
\(^b\)Department of Biochemistry and Molecular Biophysics, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA

Received by D. Finnegan

Abstract

The *Drosophila Mos1* element can be mobilized in species ranging from prokaryotes to protozoans and vertebrates, and the purified transposase can be used for in vitro transposition assays. In this report we developed a ‘mini-Mos1’ element and describe a number of useful derivatives suitable for transposon mutagenesis in vivo or in vitro. Several of these allow the creation and/or selection of tripartite protein fusions to a green fluorescent protein–phleomycin resistance (GFP-PHLEO) reporter/selectable marker. Such X-GFP-PHLEO-X fusions have the advantage of retaining 5' and 3' regulatory information and N- and C-terminal protein targeting domains. A Mos1 derivative suitable for use in transposon-insertion mediated linker insertion (TIMLI) mutagenesis is described, and transposons bearing selectable markers suitable for use in the protozoan parasite *Leishmania* were made and tested. A novel ‘negative selection’ approach was developed which permits in vitro assays of transposons lacking bacterial selectable markers. Application of this assay to several Mos1 elements developed for use in insects suggests that the large *mariner* pM[cn] element used previously in vivo is poorly active in vitro, while the Mos1-Act-EGFP transposon is highly active. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: In vitro transposition; GFP + ; Reporter gene; Gene inactivation; Linker-insertion mutagenesis

1. Introduction

Transposon mutagenesis has been widely used as a tool for genetic mapping, DNA sequencing, insertional inactivation, and promoter strength assays (Berg et al., 1989). Recently, methods for carrying out transposition in vitro with purified transposase and engineered transposons have been developed for several systems, including Tn5 (Goryshin and Reznikoff, 1998), Ty1 (Merkulov and Boeke, 1998), Tn7 (Biery et al., 2000), and Tcl/mariner elements including Himar1 (Lampe et al., 1996), Sleeping Beauty (Fischer et al., 2001), and Mos1 (Tosi and Beverley, 2000). These have facilitated rapid generation of large transposon insertion libraries into a variety of molecular cloning vectors and targets, and have been proven to be robust and valuable tools in different genetics studies.

Our laboratory has developed in vitro as well as in vivo approaches using the *Drosophila mauritiana* element *Mos1* (Gueiros-Filho and Beverley, 1997; Coates et al., 1998; Tosi and Beverley, 2000; Beverley et al., 2002). *Mos1* is one of the defining members of the Tcl/mariner transposon family (Robertson, 1995), whose activity was first detected in *Drosophila* in vivo. As typical for members of this family, *Mos1* is small (1.3 kb) and contains the transposase gene flanked by terminal inverted repeats (Plasterk, 1996; Hartl et al., 1997). Transposition is mediated by a cut and paste mechanism following recognition of the terminal inverted repeats by the transposase, and insertion into a TA target site dinucleotide (Plasterk, 1996). An efficient system for in vitro transposition of Mos1-derived elements has been developed (Tosi and Beverley, 2000). In vivo, transposition of *mariner*-based elements has been engineered into organisms ranging from prokaryotes to protozoans to vertebrates (Gueiros-Filho and Beverley, 1997; Coates et al., 1998; Fadool et al., 1998; Sherman et al., 1998; Rubin et al., 1999; Zhang et al., 2000; Fischer et al., 2001).

The ability to use the same transposon in vivo and in vitro is a powerful advantage, permitting investigators to use both...
approaches as most appropriate. In this work we describe a variety of new *Mos1* mariner derivatives that are suitable for a diverse range of transposon applications such as insertional mutagenesis, identification and recovery of gene fusions and transposon-mediated linker insertion (TIMLI) mutagenesis (Hayes and Hallet, 2000).

One goal was the design of transposons suitable for the generation of protein fusions to the green fluorescent protein (GFP) and the universal selectable marker for phleomycin resistance (PHLEO). Additionally, we describe a useful assay for transposition that does not utilize transposon-borne genetic markers, instead relying upon negative selection to detect transposition events. This allows testing of transposons lacking selectable markers or suicide replication origins required for the in vitro transposition approach, due to constraints of size or functionality in their target organism or applications.

These new transposons should be applicable in studies of many species, and expand the utility of the *Mos1* mariner system as an experimental tool. A convenient and highly active ‘mini-mariner’ element has also been generated which enables rapid generation of new transposons for future applications. We have tested these transposons in the parasitic protozoan *Leishmania*, and several of the transposons described in this work contain *Leishmania*-specific regulatory sequences that enhance their utility for work in this species.

2. Materials and methods

2.1. Bacteria and growth conditions

Escherichia coli strains DH10B (lab strain B2192; Gibco BRL), DH5α-λpir (B3684; (Garraway et al., 1997), Top10 (B 4532) and BLR (DE3) pLysS (B3842; Novagen) were used in this study. DH5α-λpir was used to provide the *pir* gene function for plasmids bearing the R6K origin of replication. All strains were grown in standard LB media supplemented when necessary with the appropriate antibiotics (ampicillin 100 μg/ml; zeocin 50 μg/ml; kanamycin 50 μg/ml; hygromycin 125 μg/ml; nourseothricin 50 μg/ml; chloramphenicol 30 μg/ml). Transposons pEL-Apr (B3780) and pM[cn] (B3779) were described previously (Coates et al., 1998; Gehring et al., 2000) and were provided by A. Gehring and A. James, respectively. Transposon pMos1-Act-EGFP (B3758) was provided by H. Zieler (unpublished work) and contains a *Drosophila* actin promoter driving a GFP + reporter gene inserted within a mariner element. Plasmid pBSCm (B1930; Cm8) was obtained from Stratagene.

2.2. Construction of *Mos1* derivatives

Plasmid DNA preparations, restrictions enzyme digests, and ligations were carried out using standard methods (Maniatis et al., 1982). DH5α-λpir was transformed using CaCl2 procedures, while electroporation was used to transform DH10B and Top 10. Typically blunt-ended DNAs were generated by the action of T4 DNA polymerase in the presence of dNTPs, except when indicated. In the following descriptions, a slash (‘/’) signifies a gene cassette that lacks an initiating ATG codon (for example /GFP) or stop codon (/GEP3), while an asterisk (‘*’) signifies a cassette bearing a stop codon separating a reporter gene and selectable marker (such as /GFP*K). The plasmid backbone bearing most of the transposons (pELHY6Δ-0) is shown in Fig. 1 and a summary of the transposons is shown in Fig. 2.

2.2.1. pELHYGmos1 (B3520)

pELHYGmos1 was created by inserting PacI–HindIII fragment (blunt) containing the wild type *Mos1* element from pNEB-Mos1 (B3082) into the BamHI site (blunt) of pEL-HYG (B2766; Garraway et al., 1997).

2.2.2. pHM6K (B3545)

pHM6K was created by inserting a BamHI–SmaI fragment (containing the R6K origin of replication of plasmid pGP704 (Miller and Mekalanos, 1988) into pELHYGmos1 digested with BglII–BsaAI, thereby exchanging the OriC with the R6K origin of replication.

2.2.3. pELHY6-0 (B3546)

pELHY6-0 was created in two steps. First the chloramphe-
nicol gene (SpPl–SacI fragment made blunt) from pUC18CM (B1935; Schweizer, 1990) was inserted into pELHYGmos1 cut with DraI–SspI, yielding pHMCm (B4287). Then a BamHI (blunt)–NdeI fragment of pHMCm containing the Shfl–XbaI linker portion and the 3' IR and the 5' end of HYG marker was ligated with a SspI–NdeI fragment of pHM6K containing the 5' IR-Ori R6K-3' HYG marker.

2.2.4. pELHY6TK-0 (B3653)

pELHY6TK-0 was made by the insertion of the HSV thymidine kinase gene (AflII–SacII fragment made blunt; from pXG-TK; B1317; (LeBowitz et al., 1992) into pELHY6-0 cut with NheI (blunt).

2.2.5. pELHY6Δ-0 (B3653)

This construct was made by self-ligation of pELHY6-0, after digestion with Maml and AocI and made blunt. A restriction map is shown in Fig. 1.

2.2.6. pELHY6Δ-K1 (B3682)

This construct contains the Km gene from pUC4K (Pharmacia; strain B4534), obtained by digestion with HincII, inserted into the MsI site of pELHy6Δ-0.

2.2.7. pELHY6TK-PG (B3615)

This plasmid contains a Ncol–Bsai fragment (blunt) bearing a phleo::gus fusion and OriC of pUT90 (B2000; Cayla, France) inserted into the Xbal site (blunt) of pELHY6TK-0.

2.2.8. pELHY6Δ-/GFP*K (B3677)

A /GFP”-Km fragment was obtained from TyKGFP (Garraway et al., 1997; B2798) by digestion with Ncol, partially filling-in with dATP + dCTP, digestion with XmaI, and made blunt with mung bean nuclease. This fragment was inserted into pELHY6Δ-0 previously cut with MsI. It should be noted that the Km gene is oriented in the opposite direction to the /GFP cassette.
2.2.9. pELHY6Δ-/GEP3* (B3692)
This construct was obtained in two steps: first, oligonucleotides SMB 860 (5'-gggatatgtgctaccatggcatatgtatagcgccaatgtatatagc-ctggcc) was used to amplify the phytochlorin resistance gene and promoter (PHLEO) from pUT90 by PCR using the Taq polymerase (one cycle of 5 min at 95°C, five cycles of 1 min at 95°C, 1 min at 55°C, 1 min at 70°C; 20 cycles of 1 min at 95°C, 1 min at 65°C, 1 min at 70°C). Primer B860 introduces a point mutation in the EM7 promoter, creating an open reading frame across this region. The PCR product was digested by BsrGI and XbaI and ligated into pBS-GFP + (B2798) cut with BsrGI and XbaI, yielding pBS-GEP (B4516). pBS-GFP + contains a gene for a modified GFP, with a S56T mutation and modified to contain GC-rich codons; this GFP is distributed by Clontech as EGFP. pBS-GEP was used as a template for PCR amplification (one cycle of 5 min at 95°C, five cycles of 1 min at 95°C, 1 min at 55°C, 1 min at 70°C; 20 cycles of 1 min at 95°C, 1 min at 65°C, 1 min at 70°C). Primer B860 introduces a point mutation in the EM7 promoter, creating an open reading frame across this region. The PCR product was digested by BsrGI and XbaI and ligated into pBS-GEP + (B2798) with BsrGI and XbaI, yielding pBS-GEP (B4516). pBS-GFP + contains a gene for a modified GFP, with a S56T mutation and modified to contain GC-rich codons; this GFP is distributed by Clontech as EGFP. pBS-GEP was used as a template for PCR amplification (one cycle of 5 min at 95°C, five cycles of 1 min at 95°C, 1 min at 55°C, 1 min at 70°C; 20 cycles of 1 min at 95°C, 1 min at 65°C, 1 min at 70°C). The PCR product which corresponds to the /GFP + with no ATG fused to the promoter-PHLEO gene was digested by EcoRV and XbaI, and inserted into pELHY6Δ-0 digested by MsiI and XbaI.

2.2.10. pELHY6Δ-/GEP3/B3851)
This construct was made by insertion of a double-stranded adaptor formed by annealing of the oligonucleotides SMB 1323 (5'-GATCGGCTCGAGCTGCA) and SMB 1324 (5'-GCTGCAGGAGCAGGAGCTG) and SMB 861, using the Taq polymerase (one cycle of 5 min at 95°C; five cycles of 1 min at 95°C, 1 min at 55°C, 1 min at 70°C; 15 cycles of 1 min at 95°C, 1 min at 65°C, 1 min at 70°C). The PCR product which corresponds to the /GFP + with no ATG fused to the promoter-PHLEO gene was digested by EcoRV and XbaI, and inserted into pELHY6Δ-0 digested by MsiI and XbaI.

2.2.11. pELHY6Δ-/GEP2/B3860)
This construct was obtained by the insertion of a PCR product containing /GFP + (with no ATG) fused to the promoter and PHLEO gene, synthesized using oligonucleotides SMB 945 (5'-gggatatgcgtgctccatggcatatgtatagcgccaatgtatatagc-ctggcc) and SMB946 (5'-ccctgcaggtctgccctccctcctcgcc) pBS-GFP DNA as a template, and the PCR protocol described for pELHY6Δ-/GEP3* above. The PCR product was digested by EcoRV and XbaI, and inserted into of pELHY6Δ-0 digested by MsiI and XbaI.

2.2.12. pELHY6Δ-/NEO*ELSAT (B4537)
This transposon was constructed in two steps. First, a cassette containing the SAT marker preceded by a Leishmania splice acceptor and an E. coli promoter from pELSAT (B2764) was obtained by digestion with BamHI and BglII, and inserted into the BamHI site of pHM3 (Kaestner et al., 1994) (B482) to create pHM3SAT2 (B4538). This has a lacZ::NEO fusion gene in the same orientation as the SAT marker. A 1.7 kb fragment containing the /NEO and SAT markers was excised with XhoI and XbaI, made blunt-ended with mung bean nuclease and cloned into the MsiI site of pELHY6Δ-0, yielding pELHY6Δ-/neo*ELSAT.

2.2.13. pELHY6Δ-ELSAT (B3683)
A cassette containing a SAT marker preceded by a Leishmania splice acceptor and an E. coli promoter from pELSAT (B2764) was obtained by digestion with Scal and StuI, and inserted into pELHY6Δ-0 cut with MsiI.

2.2.14. pELHY6Δ-2x5 (B3746)
This transposon is flanked symmetrically by identical 5′ mariner IRs. It was obtained by ligation of a 1.3 kb fragment bearing a 5′ IR-Km cassette from pELHY6Δ-K1 (B3682; made by digestion with EcoO109I, filling-in, and then digestion with XbaI), to a 2.1 kb fragment from plasmid pELHY6-0 (B3546) bearing the 5′ IR/ori R6K/EM7/AG3/ HYG regions (made by digestion with BsaBI, filling-in, and digestion with XbaI).

The sequences of all PCR products and critical regions of the transposons were confirmed by automated DNA sequencing with appropriate primers.

2.3. Transposase purification and transposition assay

We engineered an N-terminal His6-tagged Mos1 transposase by insertion of the appropriate NdeI–BamHI fragment of pET3a-Tpase (B3297; Tosi and Beverley, 2000) into pET19B (B4536) (Novagen) digested with the same enzymes, yielding pET19-Tpase (B4289). The recombinant His6-transposase protein was purified from E. coli BLR(DE3) (B3842) bearing pET19-Tpase. Expression was induced with IPTG, and inclusion bodies were recovered and solubilized in buffer A (20 mM Tris–HCl (pH 8), 500 mM NaCl, 6 M guanidine HCl, 1% NP-40) containing 70 mM imidazole as described (Tosi and Beverley, 2000). Transposase was recovered by binding to a NiSO₄ chelation column according to the manufacturer’s instructions (Qiagen). After elution with 500 mM imidazole in buffer A, the protein was renatured as described (Tosi and Beverley, 2000). The purified His6-transposase was kept at −20°C in 50% glycerol. The properties of the tagged transposase are very similar to the native transposase, however its solubility following concentration is much better (data not shown).

Standard transposition reactions contained 0.3 μg (plasmid sizes 3–10 kb) or 0.5–1 μg target DNA (cosmid sizes 45 kb), 100 ng of transposon donor, and 100 ng of purified Mos1 transposase, and were performed as previously described (Tosi and Beverley, 2000). Transpositions were recovered following transformation into E. coli lacking the pir gene product, thereby selecting against the R6K origin of replication present on the transposon donor plasmid.
3. Results

3.1. Construction of a mini-Mos1 element suitable to create translational fusions

We first created a ‘mini-Mos1’ element that would be a suitable platform for subsequent derivatives. Previously, it has been shown in an in vitro system that a modified Mos1 element containing only the 28 bp terminal IRs was inactive (Fig. 3A), while the smallest active derivative developed retained 38 and 33 bp inside of the 5’ and 3’ IRs, respectively (Tosi and Beverley, 2000). Similar findings were reported for a mini Himar1 element, containing 69 IRs (Lampe et al., 1999). In order to generate transpositional protein fusions, we needed to eliminate or avoid stop codons within the essential cis-acting sequences of the planned ‘mini-Mos1’ element. Additionally, the absence of an in-frame start codon was preferable, since potentially these could eliminate the dependence of fusion protein expression on acquisition of an upstream (target) start codon. Conceptual translation across the Mos1 5’ IR revealed a stop and start codon in frame 1, but uninterrupted reading frames in frames 2 and 3; these two reading frames also lacked ATG codons prior to the MslI site (Fig. 3A). The 3’ IR contained a stop codon in frame 4, and ATG codons in frames 5 and 6 (Fig. 3A). Thus only fusions in frames 2 and 3 across the 5’ IR are suitable for the exclusive recovery of protein fusions without the possibility of initiation at an IR-internal ATG.

With these factors in mind, we generated an ‘empty’ mini-Mos1 derivative, carried on a small donor plasmid suitable for use in vivo or in vitro (Fig. 1). pELHY6Δ-0 contains an R6K origin of replication used in the in vitro transposition assay (Tosi and Beverley, 2000), a hygromycin B resistance marker active in both E. coli and Leishmania (Garraway et al., 1997), and a ‘mini-Mos1’ element containing the 5’ and 3’ IRs separated by a 61 bp region with unique restriction sites such as MshI suitable for the insertion of reporter genes or markers.

The activity of the cis-acting sequences within the pELHY6Δ mini-Mos1 element was tested following insertion of two transposons bearing Km or SAT resistance markers (pELHY6Δ-K1 and pELHY6Δ-ELSAT, respectively), inserted into the transposon-internal Mos1 site. The in vitro transposition efficiencies were 5×10^{-4} (transpositions/target) for pELHY6Δ-K1, and 1×10^{-3} for pELHY6Δ-ELSAT. These efficiencies are comparable to the most active Mos1 derivatives studied previously (Tosi and Beverley, 2000).

The pELHY6Δ-K1 or pELHY6Δ-ELSAT transposons can be used in many general applications such as gene disruption or primer island sequencing. In E. coli, the norsothricin resistance marker SAT can be used as an alternative to kanamycin selection. Additionally, the SAT marker in pELHY6Δ-ELSAT is functional in Leishmania, as it has Leishmania specific processing signals for gene expression (a trans-splice acceptor site upstream of the SAT ORF; Garraway et al., 1997).
3.2. Transposons suitable for recovery of translational gene fusions to GFP

The intrinsically fluorescent green fluorescent protein (GFP) has been widely used as a reporter gene for protein expression studies. Fluorescence can be observed with proteins targeted to all cellular compartments, and GFP-positive cells can be quantitated and recovered by flow cytometry. We developed several transposons with the GFP+ protein as a reporter; this modified GFP contains the S65T mutation and a GC-rich codon bias (Haas et al., 1996).

3.2.1. pELHY6D/-GFP*K

This construct contains the E. coli Km marker and a GFP+ derivative lacking an initiating ATG codon, engineered into the reading frame 2 across the 5′ IR (GFP+; Figs. 2 and 3A). The first in-frame ATG within the transposon 5′ IR–GFP+ fusion protein is located past the GFP+ chromophore. Hence, this construct can yield active GFP+ only if it acquires an upstream in-frame start codon following transposition, yielding protein fusions with the GFP+ -tag at the C terminus. Additionally, /GFP*K contains a rare I-Ppol restriction site, whose asymmetric location facilitates mapping of transposon insertions insertion (Fig. 2). Transposition efficiencies of 5 × 10⁻³ (transpositions/target) were obtained for pELHY6Δ/GFP*K. This transposon has been used successfully for primer-island sequencing of Leishmania cosmids (Pedrosa et al., 2001).

3.2.2. pELHYG6Δ/-GEP3*

In this transposon, the GFP+ cassette was fused to the phleomycin resistance marker (PHLEO), allowing selection for either phleomycin/neomycin resistance or GFP expression. The linker separating the PHLEO and GFP cassettes consists of a modified EM7 E. coli promoter, designed and inserted in a way that yields an uninterrupted reading frame across the /GFP+-EM7-PHLEO (Fig. 2). In the /GEP3* transposon the fusion protein is expressed through the second reading frame of the 5′ IR (Fig. 3A,B).

/GEP3* is a compact 1.2 kb transposant that contains an E. coli selectable marker (PHLEO), and a GFP+-PHLEO marker whose expression depends on the provision of an upstream ATG following transposition. The PHLEO marker encodes a 124-amino-acid bleomycin–phleomycin binding protein, which mediates resistance in virtually all species (Drocourt et al., 1990). After the in vitro reaction, transposition pools are obtained by selection in E. coli for phleomycin resistance. These transposon pools can then be introduced into other organisms for selection for X-GFP-PHLEO protein fusion expression (through GFP by flow cytometry or by phleomycin selection), or for transcriptional activation of PHLEO (since there is a suitable initiating ATG codon upstream of PHLEO but not GFP+).

To check the functionality of the GFP fusion within pELHY6Δ/-GEP3*, we generated GFP fusion proteins in E. coli. The target plasmid pTZ18 (Pharmacia) expresses the lacZ α-peptide, which is commonly used for α-complementation of 5′ truncated β-galactosidase genes in many E. coli strains. In vitro transposition was carried out with the pELHY6Δ/-GEP3* donor and the pTZ18 target, the products were transformed into E. coli strain DH10B (lacZΔM15), and transposition events were recovered by plating in the presence of phleomycin and ampicillin with a frequency of 10⁻³. Of these colonies, 30% showed a lacZ phenotype, due to insertion of the transposon into the α-peptide gene (the remaining 70% represented insertions into nonessential regions of pTZ18, which is consistent with the relative target sizes). We analyzed 21 LacZ colonies and found that seven of these exhibited strong green fluorescence; this is the approximate frequency expected, since insertion into only 1 reading frame should give GFP expression (Fig. 3).

3.2.3. pELHYG6Δ/-GEP3/ and /GEP2/

These transposons are similar to pELHYG6Δ/-GEP3*, except that the stop codon of PHLEO was deleted and its coding region fused to the 3′ Mos1 IR in a manner which yielded an ORF that spans the entire 1.2 kb transposon (Figs. 2 and 3B). This ORF was additionally designed so that following insertion of /GEP3/ or /GEP2/ (which yields a duplication of the target TA dinucleotide), the ORF would continue into the C-terminus of the target protein. Thus, these transposons yield ‘sandwich’ protein fusions of the type X-GFP-PHLEO-X. Transposants /GEP3/ and /GEP2/ differ in which frame the obligatory Mos1 TA target can occur and still yield active fusions (Fig. 3B); /GEP3/ yields fusions only when the target TA is in the third reading frame of the target protein, while /GEP2/ yields fusions only into the second reading frame (fusions to TAs in frame 1 cannot be recovered, due to the presence of a stop codon). The frequencies of transposition obtained for these two construct is similar to the one obtained for pELHY6Δ/-GEP3*, indicating that the absence of a stop codon at the end of the phleomycin resistance gene does not alter the selection in E. coli. As for /GEP3*, transposition events are recovered first by selection for phleomycin resistance in E. coli, and then gene fusions identified by transfection into the target organism followed by selection in vivo for GFP–PHLEO ‘sandwich’ protein fusions, or PHLEO protein or transcriptional fusions.

3.3. A transposon for recovery of translational gene fusions to NEO

pELHY6Δ/-NEO*ELSAT (Fig. 2) contains the G418-resistance marker NEO, lacking its own ATG and fused across the second reading frame of the 5′ IR. This transposon additionally carries a SAT marker active in both Leishmania and E. coli as described in Section 3.1. This 1.7 kb transposon has an in vitro efficiency of transposition efficiency of 5 × 10⁻⁴. Transpositions can be recovered in E.
coli following by selection for SAT, and gene fusions to NEO are identified by selection for G418 resistance in the target organism.

3.4. A transposon suitable for the recovery of transcriptional gene fusions in vivo

Transposon pELHY6TK-PG contains a PHLEO–GUS fusion protein bearing its own initiation codon, inserted into the second reading frame of the 3′ IR, and a CoIE1 origin of replication (Fig. 2). GUS refers to E. coli β-glucuronidase, for which there are several sensitive colorimetric and fluorimetric assays. Thus the PHLEO–GUS reporter can be used as a selectable marker and reporter enzyme. Since it lacks an E. coli selectable marker, this transposon can only be used for in vivo applications, selecting for PHLEO–GUS transcriptional or translational gene fusions (Fig. 2). Additionally, the CoIE1 replication origin hinders the use of this transposon with in vitro transposition assays. However, following transposition into the target organism, in vivo, the transposon-internal CoIE1 origin can facilitate the recovery of the transposon plus flanking sequences by transformation into E. coli.

This transposon is carried on the delivery plasmid pELHY6TK, which bears the same elements as pELHY6 (E. coli/Leishmania selectable HYG marker, R6K origin of replication) and additionally the eukaryotic negative selectable marker HSV thymidine kinase gene (TK) under the control of Leishmania regulatory elements (LeBowitz et al., 1992). This allows the investigator to select against the episomal delivery plasmid following its use in Leishmania by selection with ganciclovir (LeBowitz et al., 1992).

3.5. Transposition for TIMLI mutagenesis: pELHY6Δ-2x5

A useful approach for the study of protein and gene functions has been the linker-insertion method, and an elegant transposon-mediated linker-insertional (TIMLI) mutagenesis method has been described which enables rapid and broad application of this method (Hayes and Hallet, 2000). First, a pool of transpositions into the desired target protein is generated; then, the transposon is excised en masse, leaving behind a collection of proteins bearing small residual transposon ‘footprints’. In TIMLI mutagenesis, these are engineered to be short, 4–6 amino acid insertions.

We developed a mariner derivative suitable for TIMLI mutagenesis. The 5′ IR of Mos1 contains BsrGI and SexAI restriction sites that could be used; however, the 3′ IR lacks the SexAI site. We created a ‘symmetrical’ Mos1 derivative, in which the 3′ IR had been replaced with the 5′ IR, and the Km marker was inserted between the flanking 5′ IRs (pELHY6Δ-2x5; Fig. 2). The transposition efficiency for pELHY6Δ-2x5 (1–2 × 10⁻³) was slightly higher than that of pELHY6Δ-K1, which bears the normal 5′ and 3′ IRs (5–8 × 10⁻⁴). Following generation of pools into appropriate targets with pELHY6Δ-2x5 by in vitro transposition and selection for KmR, the transposons can be excised en masse by digestion with either BsrGI or SexAI followed by self-ligation, leaving respectively behind a 18 or 12 bp (6 or 4 amino acid) ‘footprint’ lacking stop codons in all three frames. Significantly, both BsrGI and SexAI sites are relatively infrequent in both target genomes and vectors. We have successfully tested in TIMLI mutagenesis using the BsrGI site (data not shown).

3.6. A ‘Negative’ in vitro transposition assay not requiring transposon-internal E. coli-selectable marker or suicide origins or replication

The ability to assay transposition of engineered Mos1 derivatives in vitro allows one to rapidly test their activity prior to their use in more laborious circumstances, such as in eukaryotes. However, occasionally one wishes to utilize transposons in vivo whose properties are not appropriate for the in vitro system. For example, they may lack an appropriate E. coli selectable marker (such as transposons pM[cn] and pMos1-Act-EGFP), or contain replication origins other than the pir-dependent R6K origin (an example being pELHY6TK-PG; Section 3.4). While these elements could be engineered into the transposon, sometimes this is incompatible with function in vivo or in vitro, often simply due to the increase in size. To overcome this limitation, we developed an approach in which transposition was scored by inactivation of a negative selectable marker, removing the requirement for particular origins of replication on the delivery vector or transposon-internal E. coli markers. As a negative marker, we chose the lethal gene ccdB (control of cell death), expressed under the control of the lactose promoter in the plasmid pZero-2 (Invitrogen). In this assay, donor transposons were incubated with pZero-2-ccdB, which bears the Km marker. When expressed following induction with IPTG, ccdB is lethal and KmR colonies are not obtained, thus allowing the recovery of transposition events into ccdB.

We tested this approach in a standard in vitro transposition assay containing equimolar amounts of two plasmid targets, one bearing ccdB (pZero-2, KmR, ccdB⁺) and a standard plasmid target (pBSCm, CmR). The transposon donor was pELHY6Δ-ELSAT, which contains the SAT marker under control of an E. coli promoter. Following transposition in vitro, the products were transformed into the E. coli strain Top10 under conditions where ccdB expression is lethal. Transposition of ELSAT into pBSCm was scored as SATR + CmR colonies and its efficiency as SATR + CmR/CmR. Transposition into the ccdB gene was scored as KmR colonies and the efficiency of transposition into ccdB was estimated as KmR/CmR (since the wild-type pZero-2 plasmid is lethal). In these experiments, the transposition efficiency into pBSCm was 5–10 × 10⁻⁴ (Table 1). There was a background of KmR colonies arising from spontaneous mutations which reduce ccdB expression, of about 1 × 10⁻⁵, which corresponds to a background relative to the
Table 1
Use of a ‘negative’ selection transpositional assay into the lethal E. coli ccdB gene to compare in vitro transposition efficiencies

<table>
<thead>
<tr>
<th>Donor transposon</th>
<th>Relative activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pELHY6Δ-SAT</td>
<td>100</td>
</tr>
<tr>
<td>No transposon</td>
<td>1-2.9</td>
</tr>
<tr>
<td>pEL-Apr</td>
<td>37-150</td>
</tr>
<tr>
<td>pMos1-Act-EGFP</td>
<td>22-27</td>
</tr>
<tr>
<td>pM[cn]</td>
<td>1-2.9</td>
</tr>
</tbody>
</table>

*In vitro transposition reactions with the indicated transposons were performed with an equimolar mixture of the target plasmids pZero-2 (bearing the ccdB⁺ and Km<sup+r</sup> markers) and pBSCm (bearing the Cm^r marker), as described in Section 2. Typically, 3-5 × 10⁸ Cm^r colonies were obtained (this is the plasmid transformation efficiency) and ~90 Km^r colonies were obtained (this is the background arising from spontaneous loss of ccdB). The number of Cm^r colonies was used to normalize for transformation efficiency, and the efficiency of transposition obtained with the control transposon pELHY6Δ-SAT (SAT^Δ + Cm^r/Cm⁺) was 5–10 × 10⁻⁴. The relative transposition activity of test transposons was calculated as (Km_{trans}/Km_{control}) × (Cm_{trans}/Cm_{control}) × 100.

fully active transposon pELHY6Δ-SAT activity of about 1–3% (Table 1). These data confirmed the utility of the negative selection assay for comparing the in vitro activity of a given transposon against a highly active transposon control.

We then used the ‘negative transposition’ assay to test several transposons that have been used successfully in vivo, but whose transposition activity in vitro had not previously been measured. Transposon pEL-Apr has been used successfully in vivo in Streptomyces coelicolor (Gehringer et al., 2000), and its efficiency was comparable to the control transposon pELHY6Δ-ELSAT (Table 1). We also tested two transposons that have been developed previously for use in insects. Transposon pMos1-Act-EGFP showed good activity, ranging from 22 to 27% that of pELHY6Δ-ELSAT (Table 1). In contrast, the pM[cn] element, which has been used successfully in transposition assays in mosquitoes (Coates et al., 1998), showed no activity above background (Table 1). This 6 kb element contains a 4.7 kb Drosophila melanogaster cn gene, inserted within an intact Mos1 element. Possibly, the size of the pM[cn] element reduces its transposition efficiency in vitro; studies of the related element Himar shows a significant decrease in transposition efficiency with increasing size (Lampe et al., 1998).

4. Discussion

In this work we have described a collection of Mos1-based transposons, delivery plasmids and ‘negative’ transposition assays that together facilitate the design, testing and application of mariner transposon mutagenesis in many organisms. Most of the new transposons have been designed to be efficiently mobilized by the in vitro transposition system, and following the generation of suitable insertion libraries, to allow the recovery of a variety of translational and transcriptional gene fusions following transfection into target cells or species. Our collection enables fusions to be made to useful reporters such as the GFP, β-galactosidase or β-galactosidase, or eukaryotic selectable markers such as NEO or PHLEO. These allow a variety of selective or sensitive screening strategies to be incorporated into one’s experimental strategy. All of the mini-Mos1 transposons are additionally suitable for approaches such as primer-island sequencing or insertional inactivation. As necessary, new elements can be designed and inserted into the mini-Mos1 element carried on pELHY6Δ-0 (Fig. 1).

Of particular note are transposons /GEP2/ and /GEP3/, which yield tri-partite or ‘sandwich’ protein fusions of the form X-GFP-PHLEO-X (Fig. 2). Such fusions retain 5’ and 3’ flanking sequence as N- and C-terminal protein elements, increasing the likelihood of correct expression and cellular localization of the resultant fusion proteins. We have used these transposons successfully in a shuttle mutagenesis approach to recover the expected protein fusions from a number of Leishmania genes (unpublished data; Beverley et al., 2002). Additionally, we developed a mariner-based system for TIMLI mutagenesis (Hayes and Hallet, 2000), which enables the rapid generation of a series of small insertions across the protein of interest for subsequent functional studies (pELHY6Δ-2x5, Fig. 2).

A number of the transposons bear Leishmania selectable markers, such as the HYG element in the pELHY6 derivaties (which is also active in E. coli) or the SAT element in pELHY6A-ELSAT (Fig. 2). Amongst the applications that could be envisioned for these transposons, one that is particularly useful is their ability to rapidly generate constructs suitable for gene inactivation by homologous gene replacement. In this approach, in vitro mutagenesis is performed with a transposon bearing a Leishmania marker (such as pELHY6A-ELSAT), and insertions inactivating a target gene of interest identified rapidly by PCR. This provides a convenient gene targeting fragment suitable for homologous gene replacement following transfection into Leishmania. This approach could be used in many organisms by using mini-Mos1 elements with appropriate species-specific markers.

As part of this work, we also developed a novel ‘negative’ transposition assay, in which transposition is scored by inactivation of a lethal target gene (ccdB⁺; Table 1). This assay has the advantage of not requiring specific origins of replication or transposon-internal selectable E. coli markers. While these elements are essential for the in vitro transposition assay, they can compromise transposon function in eukaryotes, arising from factors such as increased size (Lampe et al., 1998). The negative selection approach eliminates this problem while allowing the investigator to test the functionality of prospective transposons (Table 1). Remarkably, we found that the Mos1-based pM[cn] transposon used previously with mosquitoes to recover a limited number of transposition events in vivo (Coates et al., 1998) did not show good activity in vitro (Table 1). In contrast, the
pMos1-Act-EGFP transposon showed strong activity, perhaps due to its smaller size. Possibly, the efficiency measured in vitro may not be strictly correlated with that observed in vivo (Fischer et al., 2001). Nonetheless, these findings suggest that in vivo transposition in mosquitoes with the mariner system could be improved substantially by using more active transposons, as judged by the in vitro transposition assay.

In summary, this collection of engineered mariner elements provides investigators studying many species a useful ‘toolkit’ for systematically applying transposon mutagenesis in vitro and in vivo.

Acknowledgements

We thank Jenni Lovett for the construction of pELHY6TK-0 and D. Dobson, J. Revollo, K. Zhang and H. Zieler for comments. This work was supported by grants from the NIH (AI29646), FAPESP (98/09805-0) and WHO/TDR (990881). We thank H. Zieler, A. James and A. Gehring for providing the transposons tested in Table 1.

References

