Short technical report

Spontaneous excision and facilitated recovery as a control for phenotypes arising from RNA interference and other dominant transgenes

Erin A. Brettmann¹, Lon-Fye Lye, Stephen M. Beverley*

Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8230, St. Louis, MO 63110, United States

Abstract

An essential control for genetic manipulation of microbes is the regeneration of the wild-type state and phenotype to validate that any mutant phenotypes are ‘on target’. For *Leishmania* gene knockouts, this is often done by re-expression of the target gene from episomal vectors, often bearing counter-selectable markers. Methods for similarly validating the outcomes from dominant mutations such as those arising from RNA interference (RNAi) are needed. We present here such an approach, relying on facilitated recovery after spontaneous excision – or ‘popouts’ – of dominant transgenes stably inserted into the ribosomal RNA array, utilizing GFP as a marker and single cell sorting to recover regenerated WT controls. We validate its utility using RNA interference knockdowns of the paraflagellar rod gene *PFR2* of *L. (Viannia) braziliensis*. The method yields stably modified lines suitable for long term studies of *Leishmania* virulence, relies solely on host rather than introduced genetic machinery, and is thus readily applied in many species and circumstances including functional genetic testing.

Keywords: Leishmania
Spontaneous excision
Paraflagellar rod
Dominant mutant transgenes
RNA interference
Transfection controls

Genetic tools in *Leishmania* have focused largely on methods yielding stably modified lines suitable for analysis of virulence in animal models, experiments which can often take more than 3 months. As in all other microbes, growth of parasites in culture can lead to unanticipated changes, including loss of virulence [1] and the procedures inherent to genetic manipulation can induce unplanned and/or off-target alterations as well [2]. In *Leishmania*, the significant potential for ‘off-target’ effects can confound the interpretation of genetic alterations, and thus reconstitution of the wild-type genotype and phenotype are considered vital controls to establish that any effects seen in engineered mutants are genetically on target [3].

In *Leishmania*, gene knockout complementation controls are typically performed by introduction of an episomal plasmid expressing an ectopic gene copy, either directly after ablation of all chromosomal copies, or prior to ablation of the chromosomal copies followed by chromosomal ablation and plasmid segregational loss [see 4, 5 for examples]. Several commonly used episomal vectors bear counter selectable drug resistance or fluorescent markers, such as thymidine kinase or GFP, which additionally facilitate tests of gene essentiality [6,7]. As episomal vectors can be lost at varying rates in the absence of continuous drug pressure [8], or show expression levels or patterns different from the endogenous gene, the ectopic gene copy can also be introduced into chromosomal locations such as the 18S ribosomal RNA locus or its native location.

While the approaches above address the requirements for recessive ‘loss of function’ mutations, there is a need for similar controls for stable dominant genetic alterations, such as those arising from RNA interference (RNAi) or dominant negative point mutations, where the high level of expression frequently required is often obtained through integration into the ribosomal RNA locus [9]. Moreover, episomal vectors may function poorly in *Leishmania* bearing an active RNAi pathway, as in *Viannia* sp. such as *L. braziliensis* and *L. guyanensis*; this pathway has been lost in most *Leishmania* species [9].

To address this need, we developed a quasi-segregational approach similar to that used for episomal positive/negative vectors such as pXNG [6]. In this facilitated excisional or ‘popout’ approach, dominant-acting transgenes are first integrated along with a GFP marker into the genome and their phenotype assessed. Then, lines that have spontaneously excised the dominant transgene from the genome are recovered, in order to establish that they recapitulate the wild-type start-

¹ Corresponding author.
Email address: stephen.beverley@wustl.edu (S.M. Beverley)

¹ Present address: Department of Internal Medicine, Division of Dermatology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8123, St. Louis, MO 63110, United States.

https://doi.org/10.1016/j.molbiopara.2018.01.004
Received 14 November 2017; Received in revised form 9 January 2018; Accepted 12 January 2018
Available online xxx
0166-6851/ © 2017.
ing point. To avoid the need for additional machinery, such as enzymes mediating site-specific recombination/Excision, we capitalized on the intrinsic genetic dynamism of repetitive arrays such as the ribosomal RNA locus. At some frequency, recombination and/or gene conversions amongst genes within such loci will spontaneously yield construct-free variants, which can be recovered by appropriate selections [10]. In our studies we have favored the use of green fluorescent protein (GFP) markers and fluorescence-activated cell sorting (FACS) recovery of single cells, which is rapid, yields clonal lines directly, and avoids treatment with potentially mutagenic nucleoside analogs targeting several counter-selectable markers, such as thymidine kinase.

As proof of principle, we introduce and illustrate the use of the vector pIR3HYG-GFP + (b) for ‘popouts’ of RNAi knockdowns of the parafilarial rod protein 2 (PFR2, LBRM 16, 1480), confirming first both loss of PFR2 expression and parafilarial rod structure, and the re-emergence of wild-type phenotypes following selection of popouts exhibiting construct loss.

We generated a modified version of the SSU rRNA integrating vectors pIR1/2 [9,11] termed pIR3HYG (B7093). As for other IR vectors, pIR3 bear two expression sites (a and b) and a drug resistance marker, flanked by ~1kb of SSU RNA sequence, whose termini are exposed by Swal digestion to promote homologous integration into any Leishmania species (Fig. 1A). pIR3 differs from the related pIR1 and pIR2 vectors by the presence of a full length α-tubulin intergenic region of *L. braziliensis* M2903 separating the two expression sites. In other experiments not shown, we found that the level of expression of reporter constructs integrated into the ‘a’ or ‘b’ sites was comparably high in *V. nannia* as well as *Leishmania* species.

pIR3HYG-GW(a) (B7381) was constructed by inserting the full-length *L. braziliensis* α-tubulin intergenic region between the two expression sites of pIR2HYG-GW(a). This plasmid contains a ‘GW’ segment that enables rapid cloning of an inverted repeat (stem-loop, StL) from a starting donor vector utilizing Gateway™ site-specific recombination technology (Invitrogen, Thermo Fisher Scientific). We previously used this strategy successfully to trigger transgene-driven RNAi in *Leishmania* (*V. nannia*) species [9,12] and here we used it to generate pIR3HYG-PFR2Sl(a)-GFP + (b) (B7608), pIR3HYG-GFP + (b) (B7395) and pIR3HYG-GW(a)-GFP + (b) (B7405) were constructed by insertion of the GC-rich GFP ORF [13] into the ‘b’ cloning site of pIR3HYG and pIR3HYG-GW(a), respectively. Following Swal digestion, pIR3HYG-GFP + (b) or pIR3HYG-PFR2Sl(a)-GFP + (b) were electroporated into *L. braziliensis* M2903, cells were plated on semisolid media containing hygromycin B (see Fig. 1 legend), and transfectant colonies emerged within 2 weeks in similar numbers.

GFP flow cytometry showed similarly high levels of expression in all SSU IR3HYG-GFP + (b) and SSU IR3HYG-Sl(a)-GFP + (b) lines examined (Fig. 1B) and the cell pellets were visibly green. As expected, quantitative RT-PCR tests showed that PFR2 mRNA expression was greatly reduced in the PFR2 StL transfectants (Fig. 2A). Similarly, these

![Diagram](image1.png)

Fig. 1. Generation of PFR2sl(a)-GFP + (b) parasites. (A) Schematic of IR3-GFP + (b) (B7395) and IR3-GW(a)-GFP + (b) (B7405) constructs carrying resistance to hygromycin B (HYG). Constructs carry sequence from the 18S rRNA locus that enables integration into the parasite genome by homologous recombination and intergenic regions (IR) carrying splice acceptor sites that permit proper trans-splicing and polyadenylation of transcribed RNA. The GFP ORF is inserted into the ‘b’ cloning site, while the ‘a’ site remains available for cloning of a gene of interest (GOI) or an RNAi transgene targeting the GOI. Plasmid sequences have been deposited in GenBank under the accession numbers MG725339 (pIR3HYG), MG73671 (pIR3HYG-GFP + (b)), MG736772 (pIR3HYG-GW(a)), and MG737713 (pIR3HYG-GW(a)-GFP + (b)). Small black arrows indicate the location of genotyping primers and dashed lines denote PCR amplicons used to confirm loss of excision of construct. Primers used were: 5′ integration, 5′-ACATCAAGATCAATGCAGGGC/5′-GCTATAATGTCAGACGCTGGG; and for 3′ integration, 5′-GGTTCCCCAGACCCTGTTCTCCCGG/5′-GGATTTGGCTCTTGTATG. Note that the 5′ integration reverse primer shown was chosen to be specific for the gene of interest (PFR2) here. PCR products were run on 1% agarose gel and visualized with ethidium bromide staining (not shown). (B) Withdrawal of drug selection from cells containing an integrated GFP + (b) or PFR2sl(a)-GFP + (b) construct allows for the accumulation of a GFP-negative population. *L. braziliensis* strain M2903 (MHOM/BR/75/M2903) was grown in fresh Schneider’s Insect Medium supplemented with 1% heat-inactivated fetal bovine serum, 100μM adenine, 5 x 10 −5% heme, 2μg/mL biotin, 2mM L-glutamine, 500 units/mL penicillin and 50μg/mL streptomycin. Transfections of promastigote cells were performed as described previously [9,11] and cells were plated on semisolid media composed of 1% agar in M199 containing 15μg/mL hygromycin B (Gold Biotechnologies). Clonal lines were passaged in media containing 10μg/mL hygromycin B. To allow deletion of the popout constructs, cells were passaged in Schneider’s medium lacking selection and GFP expression was monitored by flow cytometry. Parallel cultures under drug selection were used as a comparison. Shown is one representative clone out of three examined for each construct after two passages (12 cell doublings) following withdrawal of drug selection. Clonal lines were obtained by single-cell sorting. Log-phase cells were resuspended in phosphate-buffered saline, passed through a CellTrics 50μm filter (Partec) to remove clumps, and single cells were recovered on the basis of GFP expression using a Beckman Coulter MoFlo cell sorter. Individual cells were placed into wells of a 96-well plate containing 200μL of Schneider’s Insect Medium containing no selective antibiotic (GFP-negative cells) or 10μg/mL hygromycin B (GFP-positive cells) and incubated at 27 °C for 10days before parasite growth was scored. Wells were expanded to 5mL with or without antibiotic, as appropriate, and passaged thrice.
showed alterations in paraglellar rod formation and structure seen in previous RNAi and gene knockdown studies (Fig. 2B), and severe alterations in swimming behavior [9,14]. Specifically, the bulk of the paraglellar rod structure was absent from both longitudinal and transverse sections (9/10 and 11/11 cells examined, respectively) of the flagellum, and cells were unable to swim in a forward direction, instead "tumbling" in place.

PFR2StL(-)-GFP (b) or GFP** (+) transfectant lines were then grown without drug pressure for 2 passages (roughly 12 cell doublings) to allow emergence of cells showing spontaneous loss of the SSU::IR3HYG constructs from the ribosomal gene array. In cultures in which drug selection was maintained, 81–98% of cells expressed high levels of GFP, whereas in cultures in which drug selection was withdrawn, only 40–96% of cells expressed high levels of GFP. Fig. 1B shows representative traces, with selective drug-containing cultures containing 97% and 94% GFP-positive cells and drug-free cultures containing 62% and 81% GFP-high cells for GFP** (+) and PFR2StL(-)-GFP** (b) populations, respectively. From both construct transfectants, we gated for 'high' or 'low' GFP expression (Fig. 1B) and sorted single cells into individual 96 well microtiter plate wells containing Schneider’s media, additionally containing 10µg/mL Hygromycin B for the high GFP expressers. For both constructs, a higher fraction of wells from the GFP-low vs GFP-high sorted cells grew out (78.8±7.6% vs. 37.1±8.9%, p < 0.0001), which we attribute to the addition of hygromycin B to the media in order to ensure SSU::IR3HYG construct retention. Cultures arising from cells sorted for high GFP expression maintained this as expected (37/38). Proper integration of the SSU::PFR2StL(-)-GFP** (b) construct was confirmed by PCR for six of eight GFP-positive SSU::PFR2StL(-)-GFP** (+) clones, using construct-flanking and internal primers (see Fig. 1A). Similarly, cultures arising from cells sorted for low GFP expression similarly showed background fluorescence levels (17/18). PCR tests showed that several had completely lost the SSU::PFR2StL(-)-GFP** (b) construct, using primer sets probing the 5' or 3' flanking integration sites, or retention of the internal PFR2-Stl segment. However, in other transfectant lines similar PCR tests showed the presence of at least a portion of the SSU::IR3 construct, despite the loss of GFP segment. Partial construct loss was also reported during spontaneous loss of RNAi-integrated drug resistance cassettes in *L. major* [10]. Thus PCR confirmation that the ‘popouts’ are true nulls is important.

To distinguish the validated GFP null/construct null 'popout' lines from WT or their parental integrated SSU::IR3HYG lines, we designated them PO::GFP** (+) or PO::PFR2StL(-)-GFP** (+), respectively. Importantly, qPCR tests of three independent PO::PFR2StL(-)-GFP** (b) lines showed that the levels of PFR2 mRNA had risen from 23 ± 2% to 79 ± 17% (p < 0.001), similar to values seen for the SSU: or PO::GFP** (+) controls (100 and 87%, respectively; p not significant). Similarly, electron microscopy of the three PO::PFR2StL(-)-GFP** (b) lines showed complete restoration of the paraglellar rod in longitudinal and transverse sections (Fig. 2B). Finally, restoration of PFR2 expression in the PO lines restored normal swimming behavior, as defined by the ability of the cell to sustain swimming in a forward direction (9/150 cells swam normally in the StL vs 141/150 and 147/150 in the PO and SSU::GFP** (+) control, respectively.

Collectively, these data show a complete restoration of the wild-type phenotypes in the PO lines arising from functionally active RNAi knockdowns, attesting to the utility of this method in providing essential ‘complementation’ controls. We anticipate this method will be similarly efficacious for any RNAi knockdown, and could be applied to other dominant approaches, for example in studies of dominant negative small G protein mutants [15]. We have used the excisional/popout approach to purge RNAi constructs targeting the Leishmania virus following viral ablation [unpublished results; 12], and we anticipate that the popout approach could be productively applied in a manner similar to episomal pXNG vectors in species where episomes are poorly behaving, or indeed in any *Leishmania* species.

Importantly, the use of FACS-assisted single cell cloning allows a great many events to be scored for gene loss, even when their numbers are relatively small (GFP-low population; Fig. 1B). Thus, the popout vector pIR3HYG-GFP** (+) could be used in a manner similar to pXNG to quantitatively confirm gene essentiality or to test the functionality of
engineered mutants [6,7]. Our experiments also demonstrate that relatively large numbers of GFP-negative cells can arise in a short period of time, suggesting that such experiments are likely possible by limiting dilution, without the aid of a cell sorter. Such experiments will require extra care to ensure that populations are truly clonal, as cell clumping can easily result in mixed populations, which would confound the analysis. Finally, since episomal vectors typically show significant variation from cell to cell, the use of stably integrated vectors whose expression is relatively uniform per cell may prove advantageous under some circumstances.

Acknowledgements

We thank W. Beatty and B. Anthony for carrying out the electron microscopy studies. Single-cell sorting was performed with the assistance of the staff of the Flow Cytometry Core at the Siteman Cancer Center. This work was supported in part by NIGMS Cell and Molecular Biology Training Grant T32GM: 007067 and the Monsanto Excellence Fund for Graduate Fellowships (EB) and NIH grants RO1AI029646 and R56 AI099364 (SMB).

References

